
Characters in math 1

1 Characters in math

This chapter goes into somemore details aboutmath characters but after some remarks goes on about
about discretionaries. Traditionally TEX users enter ascii characters mixed with commands and ex­
pect to get the right visual representation. Because there are plenty math characters outside the ascii
range this means that most are accessed by a command. However, Unicode changes that: when an
editor can show the character there is no reason not to use that feature. In that case we end upwith utf
characters in the input. In this perspective is it important to realize that there is a distinction between
such a direct utf character and a command, especially when it is defined as follows:

\Umathchardef\mathcharacterf 0 \mathordinarycode `f

\startformula
f = \mathcharacterf = \Uchar"1D453

\stopformula

This gives the expected:

𝑓 = 𝑓 = 𝑓

The ascii fwill eventually become character U+1D453 but let's not worry here about how that is done;
what is more important is that this character has some extra properties. Just like the definition of the
commandwe use a primitive \Umathcode that registers that we have an ordinary and that the origin is
family zero, we also need tomake sure that the U+1D453 has those properties. The way it works is that
the engine injects amath noadwith amath character nucleus andwhen it does that it needs to resolve
the family and the class. Depending on the style the family will resolve in a text, script or scriptscript
font. The class determines the spacing and some specific engine behavior.

In ConTEXt and therefore in LuaMetaTEX we go as step further. There we also have dictionary fields,
which makes it possible to adapt properties like the class as we like after the user has entered them.
This (experimental) features relates to the fact that often Unicode math, TEX character names, and
usage doesn't really reveal what the character is about and if it is needs to have class binary, relation
or something else. If the command does carry some meaning it gets lost when we end up with these
injectedmath characters. In LuaMetaTEX we do carrymore around. Because this is experimental and
evolving we stick to mentioning that there is for instance a primitive \Umathdictdef that does what
\Umathchardef does but expects three additional numbers: properties, group and index.

In LuaMetaTEXwe try to be as detailed as possible when we resolve and store references to characters
in themath nodes (noads), even if the engine itself doesn't always need that information, for instance:
for handling a single character superscript we don't need to know its class.

This detour was needed in order to understand the following: discretionaries in math mode. In
LuaMetaTEXwe are alreadymore tolerant with respect to what can end up in a discretionary andmath
discretionaries have been supported for a while now. In the next examples, class 2 is used: binary.

test $ \dorecurse{50}{a \discretionary class 2 {$+$}{$+$}{$+$} } b$ test

test𝑎 +
+𝑎 +𝑏
test

2 Characters in math

But this is not nice: we need to enter math mode in the three snippets and likely also need to make
sure that we do that in the right style. So, that was why we can now also do this:

test $ \dorecurse{50}{a \Umathdiscretionary class 2 {<}{>}{=} } b$ test

test𝑎 =𝑎 <
>𝑎 =𝑏
test

We can wrap this in a command:

\def\weirdrelation{\Umathdiscretionary class 2 {<}{>}{=}}

but this is not what we want when we are talking + and - which are candidates for repetition. And
these are entered as utf character so there is indication of them being treated special. This is why
LuaMetaTEX has a new vector \hmcode where one can trigger specific characters to become discre­
tionaries.

\hmcode"002B=1 % +
\hmcode"2212=1 % -

test $ \dorecurse{50}{a + b - } c$ test

test𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +
+𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −
−𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +
+𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑎 +𝑏 −𝑐
test

Setting bit one of the code will enable this feature. But as usual with TEX and math there is a pitfall.
Take this (unusual) example:

\hmcode"1D453=1 % we trigger promotion to discretionary

test $\dorecurse{50}{a \Umathchar 2 0 "1D453 b} b$ test

test 𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
𝑓

1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
𝑓

1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑏 test

We see the f being repeated but also notice that the italic correction disappears because that is what
happens in the line break. But inmath this correction is actually part of thewidth (we'vewrittenplenty
about that over the years). However, when we set bit two of the code, the correction is moved into the
discretionary:

\hmcode"1D453=3 % we carry the italic correction along

test $\dorecurse{50}{a \Umathchar 2 0 "1D453 b} b$ test

test 𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑎 𝑓
1.135

𝑏𝑏 test

Characters in math 3

So, where characters need to retain their family and class, we also need to make sure that we retain
the fact that a character is to be automatically repeated at a line break. The reason why this ended up
in the engine while it could be delegated to a callback is that we do need to process discretionaries in
math anyway and also want to avoid it whenwe're not at the outer level. And because we already carry
around all kind of options with noads and glyphs it was not that hard to support this.

It is a bit of a side track but discretionaries in LuaMetaTEX are a bitmore permissive anyway. Take this:

\dorecurse{20}{%
xxxxxx
\discretionary {>>} {<<} {==}
xxxxxxxxxx

}

xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx
== xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx >>
<< xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx >>
<< xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx ==
xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx

Here we depend on the tolerance and stretch settings in order to not overflow the text boundaries. But
how about the next:

\dorecurse{20}{%
xxxxxx
\discretionary
{>\hskip0pt plus 5pt>}
{<\hskip0pt plus 5pt<}
{=\hskip0pt plus 5pt=}

xxxxxxxxxx
}

xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx
= = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx > >
< < xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx > >
< < xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = =
xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx

This timewehave someglue in the snippets. Butwecanevendo thenext trickery,wherewecanstretch
the boxed content after the line break routine has done it work. It is this mechanism that we use deep
down in the math engine too.

\dorecurse{20}{%
xxxxxx
\discretionary

{\uleaders \hbox to 2em{>\hss>}\hskip0pt plus 10pt minus 5pt}
{\uleaders \hbox to 2em{<\hss<}\hskip0pt plus 10pt minus 5pt}

% {\uleaders \hbox to 2em{=\hss=}\hskip0pt plus 10pt minus 5pt}
{==}

% xxxxxxx

4 Characters in math

xxxxxxxxxx
}

xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx
== xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx > >
< < xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx > >
< < xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx ==
xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx

So, in some way, extending the math engine lets features trickle back into the text engine and vise
versa. It is all about seeing (weird) opportunities because it is often after playing with this that one
sees more potential.

