Hi, I got a partial solution to suppress the automatic display by changing “text=theorem,” to “text=,” and “number=yes” to “number=no”. But, I couldn’t remove a blank line before the main text. So it is a partial solution.
1. to put “Theorem #.#” inside the FrameTitle?(#.# means that chapter number.theorem number) 2. to suppress the automatically display of “Thm #” inside the text?
The command \FrameTitle{Theorem \getmarking[chapternumber].\recurselevel} shows “Theorem 1.1”, but the it shows the chapternumber -1 not the real chapternumber. Also I don’t know how to put the theorem counter after chapternumber instead of \recurselevel. Here is a sample code. Thank you for reading. Best regards, Dalyoung %%%%%%%% framed Text copied from MetaFun manual \startuseMPgraphic{FunnyFrame} picture p ; numeric o ; path a, b ; pair c ; p := textext.rt(\MPstring{FunnyFrame}) ; o := BodyFontSize ; a := unitsquare xyscaled (OverlayWidth,OverlayHeight) ; p := p shifted (2o,OverlayHeight-ypart center p) ; drawoptions (withpen pencircle scaled 1pt withcolor .625red) ; b := a superellipsed .95 ; %fill b withcolor .85white ; draw b ; b := (boundingbox p) superellipsed .95 ; fill b withcolor .85white ; %.425green;%. draw b ; draw p withcolor black ; setbounds currentpicture to a ; \stopuseMPgraphic \defineoverlay[FunnyFrame][\useMPgraphic{FunnyFrame}] \defineframedtext[FunnyText][frame=off,background=FunnyFrame, offset=\bodyfontsize, width=\textwidth]%\overlaywidth]% \def\FrameTitle #1% {\setMPtext{FunnyFrame}{\hbox spread 1em{\hss\strut\ss\bf #1\hss}}} \defineenumeration[Thm] [text=, style=, title=no, prefix=yes, prefixsegments={chapter}, way=bychapter, number=no, before={\FrameTitle {Theorem \getmarking[chapternumber].\recurselevel} \startFunnyText}, after={\stopFunnyText\blank}] %\define[2]\thm{\FrameTitle{#1} %\startFunnyText #2 \stopFunnyText} \starttext \dorecurse{3} {\chapter{Chapter Title} {\FrameTitle{Fort's space test} \startFunnyText Let $X$ be a uncountable set. Let $\infty$ is a fixed point of $X$. Let $\mathcal T$ be the family of subsets $G$ such that either (i) $\infty \notin G$ or (ii) $\infty \in G \text{ and } G^c$ is finite. The space $(X, {\mathcal T} )$ is called {\bf Fort's space}. \stopFunnyText} {\getmarking[chapternumber]}.\recurselevel}% \startThm Fort's space is a compact and Hausdorff topological space. \stopThm \stoptext