Hi,

Some days ago, I asked a method to put theorem numbers in a framed title.
Recently, Wolfgang gave me a solution which worked very well.

Although the first one is much simpler than the second, I’d like to show two samples made by his suggestion. 
I hope that it may help someone who has the similar problem.

Thanks Wolfgang again.

Best regards,

Dalyoung

%%%%%%%%%% first method
%1. use \enumerationparameter{text} and add “text=Theorem” in \defineenumeration.
%%%%%%%%%%%
\defineframed
  [FunnyFramed]
  [frame=off,
   loffset=1ex,
   roffset=1ex,
   foregroundstyle=\ssbf]

\startuseMPgraphic{FunnyFrame}
    picture p ; numeric o ; path a, b ; pair c ;
    p := textext.rt("\FunnyFramed{\enumerationparameter{text} \convertedcounter[Theorem]}") ;
    o := BodyFontSize ;
    a := unitsquare xyscaled (OverlayWidth,OverlayHeight) ;
    p := p shifted (2o,OverlayHeight-ypart center p) ;
    drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
    b := a superellipsed .95 ;
    draw b ;
    b := (boundingbox p) superellipsed .95 ;
    fill b withcolor .85white ;
    draw b ;
    draw p withcolor black ;
    setbounds currentpicture to a ;
\stopuseMPgraphic 


\defineoverlay[FunnyFrame][\useMPgraphic{FunnyFrame}] 

\defineframedtext
  [FunnyText]
  [frame=off,
   background=FunnyFrame,
   before={\blank[line,halfline]},
   after={\blank[line]},
   offset=\bodyfontsize,
   width=\textwidth]

\defineenumeration[Theorem]
  [title=no,
  text=Theorem,
   prefix=yes,
   prefixsegments=chapter,
   way=bychapter,
   alternative=command,
   headcommand=\gobbleoneargument,
   before=\startFunnyText,
   after=\stopFunnyText]

\defineenumeration[Lemma]
  [title=no,
  text=Lemma,
   prefix=yes,
   prefixsegments=chapter,
   way=bychapter,
   alternative=command,
   counter=Theorem,
   headcommand=\gobbleoneargument,
   before=\startFunnyText,
   after=\stopFunnyText]
   
\defineenumeration[Coro]
  [title=no,
  text=Corollary,
   prefix=yes,
   prefixsegments=chapter,
   way=bychapter,
   alternative=command,
   counter=Theorem,
   headcommand=\gobbleoneargument,
   before=\startFunnyText,
   after=\stopFunnyText]
\starttext

\dorecurse{3}
{\chapter{Chapter Title}
    

\startLemma
    Fort's space is a compact and Hausdorff topological space.
\stopLemma

\startTheorem
    Fort's space is a compact and Hausdorff topological space.
\stopTheorem


\startTheorem
Let $X$ be a uncountable set. Let $\infty$ is a fixed point of $X$. Let $\mathcal T$ be the family of subsets $G$ such that either (i) $\infty \notin G$ or (ii) $\infty \in G \text{ and } G^c$ is finite. The space $(X, {\mathcal T} )$ is called {\bf Fort's space}.
\stopTheorem

\startLemma
    Fort's space is a compact and Hausdorff topological space.
\stopLemma

\startCoro
    Fort's space is a compact and Hausdorff topological space.
\stopCoro
}

\stoptext
    
%%%%% 2nd method
%2. use \MPvar{} and define 3 different backgrounds, 3 different framedtexts like
% \defineoverlay[FunnyFrameT][\useMPgraphic{FunnyFrame}{what=Theorem}] 
%%%%%

\defineframed
  [FunnyFramed]
  [frame=off,
   loffset=1ex,
   roffset=1ex,
   foregroundstyle=\ssbf]

\startuseMPgraphic{FunnyFrame}
    picture p ; numeric o ; path a, b ; pair c ;
    p := textext.rt("\FunnyFramed{\MPvar{what} \convertedcounter[Theorem]}") ;                   
    o := BodyFontSize ;
    a := unitsquare xyscaled (OverlayWidth,OverlayHeight) ;
    p := p shifted (2o,OverlayHeight-ypart center p) ;
    drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
    b := a superellipsed .95 ;
    draw b ;
    b := (boundingbox p) superellipsed .95 ;
    fill b withcolor .85white ;
    draw b ;
    draw p withcolor black ;
    setbounds currentpicture to a ;
\stopuseMPgraphic 

\defineoverlay[FunnyFrameT][\useMPgraphic{FunnyFrame}{what=Theorem}] 
\defineoverlay[FunnyFrameL][\useMPgraphic{FunnyFrame}{what=Lemma}] 
\defineoverlay[FunnyFrameC][\useMPgraphic{FunnyFrame}{what=Corollary}] 

\defineframedtext
  [FunnyTheorem]
  [frame=off,
   background=FunnyFrameT,
   before={\blank[line,halfline]},
   after={\blank[line]},
   offset=\bodyfontsize,
   width=\textwidth]

\defineframedtext
  [FunnyLemma]
  [frame=off,
   background=FunnyFrameL,
   before={\blank[line,halfline]},
   after={\blank[line]},
   offset=\bodyfontsize,
   width=\textwidth]

\defineframedtext
  [FunnyCoro]
  [frame=off,
   background=FunnyFrameC,
   before={\blank[line,halfline]},
   after={\blank[line]},
   offset=\bodyfontsize,
   width=\textwidth]

\defineenumeration[Theorem]
  [title=no,
   prefix=yes,
   prefixsegments=chapter,
   way=bychapter,
   alternative=command,
   headcommand=\gobbleoneargument,
   before=\startFunnyTheorem,
   after=\stopFunnyTheorem]

\defineenumeration[Lemma]
  [title=no,
   prefix=yes,
   prefixsegments=chapter,
   way=bychapter,
   alternative=command,
   counter=Theorem,
   headcommand=\gobbleoneargument,
   before=\startFunnyLemma,
   after=\stopFunnyLemma]

\defineenumeration[Coro]
  [title=no,
   prefix=yes,
   prefixsegments=chapter,
   way=bychapter,
   alternative=command,
   counter=Theorem,
   headcommand=\gobbleoneargument,
   before=\startFunnyCoro,
   after=\stopFunnyCoro]

\starttext

\dorecurse{3}
{\chapter{Chapter Title}
    

\startLemma
    Fort's space is a compact and Hausdorff topological space.
\stopLemma

\startTheorem
    Fort's space is a compact and Hausdorff topological space.
\stopTheorem


\startTheorem
Let $X$ be a uncountable set. Let $\infty$ is a fixed point of $X$. Let $\mathcal T$ be the family of subsets $G$ such that either (i) $\infty \notin G$ or (ii) $\infty \in G \text{ and } G^c$ is finite. The space $(X, {\mathcal T} )$ is called {\bf Fort's space}.
\stopTheorem

\startLemma
    Fort's space is a compact and Hausdorff topological space.
\stopLemma

\startCoro
    Fort's space is a compact and Hausdorff topological space.
\stopCoro
}

\stoptext